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How to Synthesize
Video?




Temporal Coherence




Optical Flow




GAN Loss
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Sequential Generation




Motion Representation




Video-to-Video Synthesis

Wang et al. NeurlPS 2018




Paired Dataset




One Domain is Synthetic

Face—Edge—Face Results
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Pix2PiIxHD

Wang et al. CVPR 2018
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Sequential Generation

We generate current frame using the current source
frame, the last two source frame and the last two
generated frames.
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Using Optical Flow
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GAN Loss
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Additional Loss Terms
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Questions?



Video Generation from Single
Semantic Label Map

Pan et al. CVPR 2019
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Paired Dataset




General Approach
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Img2Vid Training

a) Motion Encoder b) Video Decoder
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Img2Vid Inference

b) Video Decoder
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Loss Terms

Reconstruction (VGG and L1)
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First Order Motion Model for
Image Animation

Siarohin et al. NeurlPS 2019




Motion transfer

Source Image

Driving Video

Result



Dataset




General Approach

Two Frames

Training Single Frame Inference




The Challenge

Adjust the motion
representation to a
different scene




Keypoints representation




Keypoints representation

Bottleneck
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First Order Estimation

I(z) ~ 1T(py) + J(z — pp)

e Compute a transformation for each keypoint
* |n practice, J is computed by the keypoint detector
* We feed the dense motion network with the

transformations and source image warped according to
these transformations



Training Overview
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Inference Overview
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Loss Terms

e Reconstruction

 Keypoints Equivariance
(Perform transformation over the image and expect to get

the keypoints after the same transformation)

 Jacobian Equivariance



Fallure cases

This approach assumes that the object in the first frame of the driving
video and the object in the source image should be in similar poses.
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Image taken from Monkey-Net paper
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Everybody Dance Now

Chan et al. ICCV 2019




Unpaired Data
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Temporal Coherence

G(x,) G(x;41)

Fake,
— Temporally
Incoherent

Y, Vi1

xt, Xt41
1

1 S

Real,
—> Temporally
Coherent




Other Loss Terms

e Reconstruction for both frames (VGG loss)

* GAN loss (without temporal smoothing)



Face GAN
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* Trained using GAN
* Without temporal smoothness
* Optimize separately
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