
Video Synthesis
Ron Mokady



Image Synthesis



Image to Image Translation



Style Transfer



Content Transfer
ResultTargetSource



How to Synthesize 
Video?



Temporal Coherence



Optical Flow
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Sequential Generation
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Motion Representation



Video-to-Video Synthesis
Wang et al. NeurIPS 2018



Paired Dataset



One Domain is Synthetic 



Pix2PixHD
Wang et al. CVPR 2018



Sequential Generation
We generate current frame using the current source 
frame, the last two source frame and the last two 
generated frames.

Xt = G(St
t−2, Xt−1

t−2) = G(St, St−1, St−2, Xt−1, Xt−2)



Using Optical Flow
Xt = (1 − Mt) ⋅ Wt−1(Xt−1) + Mt ⋅ Ht
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Background Foreground 
Decomposition

Ht = (1 − MB,t) ⋅ HF,t + MB,t ⋅ HB,t

From the 
Segmentation



GAN Loss
Conditional Image 
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Conditional Video 
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Additional Loss Terms

Optical Flow Loss

Reconstruction (VGG  and 
discriminator features)



Questions?



Video Generation from Single 
Semantic Label Map

Pan et al. CVPR 2019



Single 
Segmentation 

Map
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Segmentation 

Map

Generation
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Paired Dataset



General Approach

Pix2PixHD



Img2Vid Training
VAE



Img2Vid Inference

∼ N(0,1)



Loss Terms
Reconstruction (VGG  and L1)

Optical Flow Reconstruction

Optical Flow Consistency

Optical Flow Smoothness

Occlusion Mask Regularization

KL-divergence



Questions?



First Order Motion Model for 
Image Animation

Siarohin et al. NeurIPS 2019 



Motion transfer
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Dataset



General Approach
Training Inference
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The Challenge
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Keypoints representation
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First Order Estimation

• In practice, J is computed by the keypoint detector

• We feed the dense motion network with the 
transformations and source image warped according to 
these transformations

T(z) ≈ T(pk) + Jk(z − pk)

• Compute a transformation for each keypoint



Training Overview



Inference Overview



Loss Terms
• Reconstruction

• Keypoints Equivariance 
(Perform transformation over the image and expect to get 
the keypoints after the same transformation)

• Jacobian Equivariance 



Failure cases
This approach assumes that the object in the first frame of the driving 
video and the object in the source image should be in similar poses.

Image taken from Monkey-Net paper



Questions?



Everybody Dance Now
Chan et al. ICCV 2019



Unpaired Data
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Task
OpenPose



Training
Pre-trained



Transfer

Heights 
Ankle position



Temporal Coherence



Other Loss Terms
• Reconstruction for both frames (VGG loss)

• GAN loss (without temporal smoothing)



Face GAN

Generated 
Image

• Trained using GAN
• Without temporal smoothness
• Optimize separately





Questions?


