# Video Synthesis

Ron Mokady

# Image Synthesis



#### Image to Image Translation

Input labels



Synthesized image



# Style Transfer



# **Content Transfer**



# How to Synthesize Video?



# **Temporal Coherence**



# **Optical Flow**



### GAN Loss



### Size





# Sequential Generation



# Motion Representation





#### Video-to-Video Synthesis

Wang et al. NeurIPS 2018



#### **Paired Dataset**



# **One Domain is Synthetic**

#### $Face \rightarrow Edge \rightarrow Face Results$





input

edges



output







edges





input



output





output

## Pix2PixHD

Wang et al. CVPR 2018



Input labels

Synthesized image

![](_page_15_Picture_5.jpeg)

# Sequential Generation

We generate current frame using the current source frame, the last two source frame and the last two generated frames.

$$X_{t} = G(S_{t-2}^{t}, X_{t-2}^{t-1}) = G(S_{t}, S_{t-1}, S_{t-2}, X_{t-1}, X_{t-2})$$

# Using Optical Flow

$$\begin{array}{c} X_t = (1 - M_t) \cdot W_{t-1}(X_{t-1}) + M_t \cdot H_t \\ \hline \\ \text{Estimated Soft} \\ \text{Occlusion} \\ \text{Mask} \\ \end{array} \begin{array}{c} \text{Estimated} \\ \text{Optical Flow} \\ \end{array} \begin{array}{c} \text{Hallucinated} \\ \text{Image} \\ \end{array}$$

![](_page_17_Picture_2.jpeg)

Warped Image

Inverse Ground-Truth Occlusion Map

#### Background Foreground Decomposition

#### GAN Loss

![](_page_19_Figure_1.jpeg)

#### **Additional Loss Terms**

**Optical Flow Loss** 
$$\mathcal{L}_W = \frac{1}{T-1} \sum_{t=1}^{T-1} \left( \|\tilde{\mathbf{w}}_t - \mathbf{w}_t\|_1 + \|\tilde{\mathbf{w}}_t(\mathbf{x}_t) - \mathbf{x}_{t+1}\|_1 \right)$$

Reconstruction (VGG and discriminator features)

 $\sum_{i \frac{1}{P_i}} [||\psi^{(i)}(\mathbf{x}) - \psi^{(i)}(G(\mathbf{s}))||_1]$ 

#### **Questions?**

#### Video Generation from Single Semantic Label Map

Pan et al. CVPR 2019

![](_page_22_Figure_2.jpeg)

#### Generation

![](_page_23_Figure_1.jpeg)

#### Prediction

![](_page_24_Figure_1.jpeg)

map

## **Paired Dataset**

![](_page_25_Picture_1.jpeg)

![](_page_25_Picture_2.jpeg)

![](_page_26_Figure_0.jpeg)

**Pix2PixHD** 

![](_page_27_Figure_0.jpeg)

# Img2Vid Inference

![](_page_28_Figure_1.jpeg)

## Loss Terms

**Reconstruction (VGG and L1)** 

Optical Flow Reconstruction $\mathcal{L}_r(W^f, W^b, V) = \sum_t^T \sum_{\mathbf{x}} o_t^f(\mathbf{x}) |I_0(\mathbf{x}) - I_t(\mathbf{x} + \mathbf{w}_t^f(\mathbf{x}))|_1$ <br/> $+ o_t^b(\mathbf{x}) |I_t(\mathbf{x}) - I_0(\mathbf{x} + \mathbf{w}_t^b(\mathbf{x}))|_1,$ Optical Flow Consistency $\mathcal{L}_{fc}(W^f, W^b) = \sum_t^T \sum_{\mathbf{x}} o_t^f(\mathbf{x}) |\mathbf{w}_t^f(\mathbf{x}) - \mathbf{w}_t^b(\mathbf{x} + \mathbf{w}_t^f(\mathbf{x}))|_1$ <br/> $+ o_t^b(\mathbf{x}) |\mathbf{w}_t^b(\mathbf{x}) - \mathbf{w}_t^f(\mathbf{x} + \mathbf{w}_t^b(\mathbf{x}))|_1,$ Optical Flow Smoothness $\mathcal{L}_{fs}(W^f, W^b) = |\nabla W^f|_1 + |\nabla W^b|_1$ 

**Occlusion Mask Regularization** 

$$\lambda_p |1 - O^b|_1 + \lambda_p |1 - O^f|_1$$

**KL-divergence** 

#### **Questions?**

#### First Order Motion Model for Image Animation

Siarohin et al. NeurIPS 2019

![](_page_31_Picture_2.jpeg)

![](_page_31_Picture_3.jpeg)

# Motion transfer

![](_page_32_Figure_1.jpeg)

#### Dataset

![](_page_33_Picture_1.jpeg)

# General Approach

![](_page_34_Figure_1.jpeg)

# The Challenge

Adjust the motion representation to a different scene

![](_page_35_Picture_2.jpeg)

## Keypoints representation

![](_page_36_Picture_1.jpeg)

![](_page_36_Picture_2.jpeg)

![](_page_36_Picture_3.jpeg)

# Keypoints representation

![](_page_37_Figure_1.jpeg)

# First Order Estimation

 $T(z) \approx T(p_k) + J_k(z - p_k)$ 

- Compute a transformation for each keypoint
- In practice, J is computed by the keypoint detector
- We feed the dense motion network with the transformations and source image warped according to these transformations

# **Training Overview**

![](_page_39_Figure_1.jpeg)

# Inference Overview

![](_page_40_Figure_1.jpeg)

### Loss Terms

Reconstruction

 Keypoints Equivariance (Perform transformation over the image and expect to get the keypoints after the same transformation)

• Jacobian Equivariance

### Failure cases

This approach assumes that the object in the first frame of the driving video and the object in the source image should be in similar poses.

![](_page_42_Picture_2.jpeg)

Image taken from Monkey-Net paper

#### **Questions?**

#### **Everybody Dance Now**

Chan et al. ICCV 2019

![](_page_44_Picture_2.jpeg)

# **Unpaired Data**

Source Video

![](_page_45_Picture_2.jpeg)

Target Video

![](_page_45_Picture_4.jpeg)

![](_page_45_Picture_5.jpeg)

![](_page_45_Picture_6.jpeg)

![](_page_45_Picture_7.jpeg)

#### Task

![](_page_46_Figure_1.jpeg)

# Training

![](_page_47_Figure_1.jpeg)

#### Transfer

![](_page_48_Figure_1.jpeg)

# **Temporal Coherence**

![](_page_49_Figure_1.jpeg)

# **Other Loss Terms**

- Reconstruction for both frames (VGG loss)
- GAN loss (without temporal smoothing)

## Face GAN

![](_page_51_Figure_1.jpeg)

- Trained using GAN
- Without temporal smoothness
- Optimize separately

![](_page_52_Picture_0.jpeg)

#### **Questions?**